'Number of SubArrays' Techniques

Problem Types

You are told to compute number of SubArrays with certain property .

Approach 1

  • Scan line from left to right .
  • For each right end (r) , calculate how many SubArrays starting with some l such that l<r . Add this count of l

Approach 2

  • Fix Border [l,r] with the given candidate property
  • For each border add border length to the SubArray

Example 1

Calculate the number of SubArrays such that Sum(l,r) = k

Solution Sketch

1
2
3
    Sum(l,r) = k
=> Prefix(r) - Prefix(l-1) = k
=> Prefix(l-1) + k = Prefix(r)

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

int solve()
{
int n,k;
cin>>n>>k;

vector<int>v(n+1),p(n+1,0);
for(int i=1;i<=n;i++) cin>>v[i];
for(int i=1;i<=n;i++) p[i] = p[i-1]+v[i];

map<int,int>m;

int ans = 0;

for(int i=1;i<=n;i++)
{
int left = p[i-1] + k;
m[left]++;

int right = p[i];
ans += m[right]; /// count how many subarrays (l,i) satisifes the condition
}

return ans;
}

Example 2

Calculate the number of SubArrays such that Sum(l,r) = SubArray's length

Solution Sketch
The solution is almost identical except there is something more to learn in here . As the paramter k consists of l and r , the idea is to put them in such a way that f(l) and f(r) are on diffrent sides.

1
2
3
    Sum(l,r) = r-l+1
=> Prefix(r) - Prefix(l-1) = r-l+1
=> Prefix(l-1) - l = Prefix(r) - r - 1

Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

int solve()
{
int n,k;
cin>>n>>k;

vector<int>v(n+1),p(n+1,0);
for(int i=1;i<=n;i++) cin>>v[i];
for(int i=1;i<=n;i++) p[i] = p[i-1]+v[i];

map<int,int>m;

int ans = 0;

for(int i=1;i<=n;i++)
{
int left = p[i-1] - i;
m[left]++;

int right = p[i] - i - 1;
ans += m[right]; /// count how many subarrays (l,current right end) satisifes the condition
}

return ans;
}

More Practice Problems

  • Count the Subarrays (HackerEarth)

    Code
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    /** Which of the favors of your Lord will you deny ? **/

    #define int long long

    void solveTC()
    {
    int n,k;
    cin>>n>>k;

    vector<int>v(n+1),p(n+1);
    for(int i=1;i<=n;i++) cin>>v[i];
    for(int i=1;i<=n;i++) p[i] = p[i-1] + v[i];

    sort(ALL(p));
    DBG(p);

    /**
    p(r) > p(l-1) + k

    for every l-1 we count how many r's such that p(r) > p(l-1) + k
    **/

    int ans = 0;
    for(int i=1;i<=n;i++)
    {
    int need = p[i-1] + k;
    int less = upper_bound(ALL(p),need) - p.begin() - 1;
    DBG(less);

    ans += n-less;
    }
    cout<<ans<<endl;
    }
  • Number of Subarrays with Bounded Maximum (LeetCode)

    Hint

    2 Pointer . Find the candidate borders [l,r]

    Code
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    class Solution {
    public:
    int numSubarrayBoundedMax(vector<int>& A, int L, int R) {

    int n = A.size();
    int left = -1 , right = -1 , ans = 0;
    for(int i=0;i<n;i++)
    {
    if(A[i]>=L) right = i;
    if(A[i]>R) left = i;

    ans += (right-left);
    }

    return ans;
    }
    };
  • Increasing SubArrays (CodeChef)

    Hint

    2 Pointer . Find the candidate borders [l,r]

    Code
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    #define int long long
    void solveTC()
    {
    int n;
    cin>>n;

    vector<int>v(n+1);
    for(int i=1;i<=n;i++) cin>>v[i];

    int left = 0, right = 0, ans = 0;
    for(int i=1; i<=n; i++)
    {
    if(v[i]>=v[i-1])
    right = i;
    else if(v[i]<v[i-1])
    left = i-1 , right = i;

    DBG(right-left);
    ans += (right-left); /// number of candidate subarrays in the [left+1,right] border
    }

    cout<<ans<<endl;
    }
  • Three Occurreneces (Codeforces)

    Hint 1

    Can you think of a way to solve the number of distinct elements in ranges [i,fixed R] using Segment Tree ?

    Hint 2

    Can you think of a way to track the number of numbers that have frequency 3 in ranges [i,fixed R] using the same Segment Tree ?

    Code
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
    100
    101
    102
    103
    104
    105
    106
    107
    108
    109
    110
    111
    112
    113
    114
    115
    116
    117
    118
    119
    120
    121
    122
    123
    124
    125
    126
    127
    128
    129
    130
    131
    132
    133
    134
    135
    136
    137
    138
    139
    140
    141
    142
    143
    144
    145
    146
    147
    148
    149
    150
    151
    152
    153
    154
    155
    156
    157
    158
    159
    160
    161
    162
    163
    164
    165
    166
    167
    168
    169
    170
    171
    172
    173
    174
    175
    176
    177
    178
    179
    180
    181
    182
    183
    184
    185
    186
    187
    188
    189
    190
    191
    192
    193
    194
    195
    196
    197
    198
    199
    200
    201
    202
    203
    204
    205
    206
    207
    208
    209
    210
    211
    212
    213
    214
    215
    216
    217
    218
    219
    220
    221
    222
    223
    224
    225
    226
    227
    228
    229
    230
    231
    232
    233
    234
    235
    236
    237
    238
    239
    240
    241
    242
    243
    244
    245
    246
    247
    248
    249
    250
    251
    252
    253
    254
    255
    256
    257
    258
    259
    260
    261
    262
    263
    264
    265
    266
    267
    268
    269
    270
    271
    272
    273
    274
    275
    276
    277
    278
    279
    280
    281
    282
    283
    284
    285
    286
    287
    288
    289
    290
    291
    292
    293
    294
    /** Which of the favors of your Lord will you deny ? **/

    #include<bits/stdc++.h>
    using namespace std;

    #define LL long long
    #define PII pair<int,int>
    #define PLL pair<LL,LL>
    #define F first
    #define S second

    #define ALL(x) (x).begin(), (x).end()
    #define READ freopen("alu.txt", "r", stdin)
    #define WRITE freopen("vorta.txt", "w", stdout)

    #ifndef ONLINE_JUDGE
    #define DBG(x) cout << __LINE__ << " says: " << #x << " = " << (x) << endl
    #else
    #define DBG(x)
    #define endl "\n"
    #endif

    template<class T1, class T2>
    ostream &operator <<(ostream &os, pair<T1,T2>&p);
    template <class T>
    ostream &operator <<(ostream &os, vector<T>&v);
    template <class T>
    ostream &operator <<(ostream &os, set<T>&v);

    inline void optimizeIO()
    {
    ios_base::sync_with_stdio(false);
    cin.tie(NULL);
    }

    const int INF = 1e9;

    struct node
    {
    PLL mx;
    LL lazy;

    node()
    {
    mx = {-INF,0};
    lazy = 0;
    }

    node(PLL mx)
    {
    this-> mx = mx;
    lazy = 0;
    }

    void create_leaf(LL val)
    {
    mx = {val,1};
    lazy = 0;
    }
    };

    struct LazySegmentTree
    {
    vector<node>Tree;
    vector<int>ara;
    int n;

    LazySegmentTree(int n)
    {
    this->n = n;
    int len = n+1;
    ara = vector<int>(len);
    Tree = vector<node>(len<<2);
    }

    void build()
    {
    __build(1,1,n);
    }

    void update(int L,int R,LL add)
    {
    __update(1,1,n,L,R,add);
    }

    node query(int L,int R)
    {
    return __query(1,1,n,L,R);
    }

    /**-------------------------------------**/

    node merge_nodes(node &A,node &B)
    {
    if(A.mx.F>B.mx.F)
    return A;
    else if(A.mx.F<B.mx.F)
    return B;
    else
    return node({A.mx.F,A.mx.S+B.mx.S});
    }

    void node_update(int v,LL add)
    {
    Tree[v].mx.F += add;
    Tree[v].lazy += add;
    }

    void push(int v,int st,int en)
    {
    int lc = v<<1, rc = lc|1;

    if(st != en)
    {
    node_update(lc,Tree[v].lazy);
    node_update(rc,Tree[v].lazy);
    }

    Tree[v].lazy = 0;
    }

    void __build(int cur,int start,int end) /** build the segment tree **/
    {
    if(start==end)
    {
    Tree[cur].create_leaf(0);
    return;
    }

    int mid = (start+end)>>1;
    int lc = cur<<1, rc = lc|1;

    __build(lc,start,mid);
    __build(rc,mid+1,end);

    Tree[cur] = merge_nodes(Tree[lc],Tree[rc]);
    }

    void __update(int cur, int start, int end, int l,int r, LL add)
    {
    push(cur,start,end); /** Pushdown to children node **/

    if(r<start || end<l) return;
    else if (l<=start && r>=end)
    {
    node_update(cur,add);
    push(cur,start,end); /** Pushdown to children node **/
    }
    else
    {
    int mid = (start + end)>>1;
    int lc = cur<<1, rc = lc|1;

    __update(lc, start, mid,l,min(r,mid), add);
    __update(rc, mid+1, end,max(l,mid+1),r, add);

    Tree[cur] = merge_nodes(Tree[lc],Tree[rc]);
    }
    }

    node __query(int cur,int start,int end,int l,int r) /** RANGE query **/
    {
    push(cur,start,end); /** Pushdown to children node **/

    if(l>r) return node({-INF,0});

    if(start>=l && end<=r)
    {
    return Tree[cur];
    }

    int mid = (start+end)>>1;
    int lc = cur<<1, rc = lc|1;

    node p1 = __query(lc,start,mid,l,min(r,mid));
    node p2 = __query(rc,mid+1,end,max(l,mid+1),r);

    return merge_nodes(p1,p2);

    }

    };

    void UNDO(int x, LazySegmentTree &lst, vector<vector<int>> &pos)
    {
    int sz = pos[x].size();
    if(sz<4)
    return;

    int L = pos[x][sz-4]+1;
    int R = pos[x][sz-3];

    lst.update(L,R,-1);
    }

    void DO(int x, LazySegmentTree &lst, vector<vector<int>> &pos)
    {
    int sz = pos[x].size();
    if(sz<4)
    return;

    int L = pos[x][sz-4]+1;
    int R = pos[x][sz-3];

    lst.update(L,R,+1);
    }

    int32_t main()
    {
    optimizeIO();

    int n;
    cin>>n;

    LazySegmentTree LST(n);
    LST.build();

    vector<int>v(n+1);
    for(int i=1; i<=n; i++)
    cin>>v[i];

    int max_num = n+1;
    vector<int>last(max_num,0);

    vector<vector<int>>pos(max_num);

    node q = LST.query(1,n);
    DBG(q.mx);

    LL ans = 0;

    for(int i=1; i<=n; i++)
    {
    int el = v[i];

    if(pos[el].empty())
    pos[el].push_back(0);

    UNDO(el,LST,pos);
    pos[el].push_back(i);
    DO(el,LST,pos);

    int L = last[el]+1;
    int R = i;

    last[el] = i;

    LST.update(L,R,-1);

    node q = LST.query(1,i);
    DBG(q.mx);

    if(q.mx.F==0) ans += q.mx.S;
    }

    cout<<ans<<endl;

    return 0;
    }

    /**

    **/

    template<class T1, class T2>
    ostream &operator <<(ostream &os, pair<T1,T2>&p)
    {
    os<<"{"<<p.first<<", "<<p.second<<"} ";
    return os;
    }
    template <class T>
    ostream &operator <<(ostream &os, vector<T>&v)
    {
    os<<"[ ";
    for(T i:v)
    {
    os<<i<<" " ;
    }
    os<<" ]";
    return os;
    }

    template <class T>
    ostream &operator <<(ostream &os, set<T>&v)
    {
    os<<"[ ";
    for(T i:v)
    {
    os<<i<<" ";
    }
    os<<" ]";
    return os;
    }