LightOj 1428 (Melody Comparison)

#lightoj #cp #problem_solving #string #suffix_array #kmp #binary_search

Idea


  • First , think an easier version of this problem . How many distinct_ _substrings are possible of a string S ?

Let’s solve an easier version of this easy problem . How many _substrings_ are possible of a string S ?
For any p[i] i.e for any suffix , the number of possible substrings are (S.size() - p[i])
Then the _ending position_ for possible substrings starts from p[i] and ends at S.size() - 1 (0 based indexing) . Hence the number of possible substrings are (S.size() - p[i])

Now , how many of them are _distinct_ ?
We need to look into the LCP array for that . When we know LCP(i) , we know the length of Longest Common Prefix of suffix i and suffix i-1
Now , the _ending position_ for possible substrings starts from p[i] + LCP(i) and ends at S.size() - 1 (0 based indexing)

Why p[i] + LCP(i) ?

Because in the i-1 th suffix we have already considered the substrings that start from p[i] , p[i] + 1 , … , p[i] + LCP(i) - 1

Now that we have solved all the easier versions . Let’s solve our problem :D

How many among the distinct substrings doesn’t contain another string as a substring ?
Let’s call this other string SUB .
What’s the thing that will change in our substring count ?

For any suffix , the ending position for possible substrings still starts from p[i] + LCP(i) . But this time we can’t end at S.size()-1 as that could lead to have substring having the string SUB . So , we need to find the new ending positions .

For this part we need to know the positions where our string SUB appears in our string S . We can use KMP_ for that . Also we can b_inary search on suffix array for that .
Anyway , now that you know where our string SUB occurs , you know that then ending position for that values will be p[i] + SUB.size() - 1 . As , if we go one more we would have considered the string SUB.
Now , we can solve for the rest of the positions easily .

Let’s see an example for this case.

Let , S = abacdaba & SUB = aba

abacdaba
0^^^^5^^

aba occurs in position 0 and 5 . What are the ending positions of 0 and 5 ?
For , 0 it is 0+2 = 2 . We can not end anywhere starting from 2 and beyond . So , we can make a ab but not aba

So , the ending positions become ,

abacdaba
2^^^^7^^

For other positions ?

abacdaba
27777788

Why ?
Well , figure that out yourself :p It’s really easy to see why

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302

/** Which of the favors of your Lord will you deny ? **/

#include<bits/stdc++.h>
using namespace std;

#define LL long long
#define PII pair<int,int>
#define PLL pair<LL,LL>
#define MP make_pair
#define F first
#define S second

#define ALL(x) (x).begin(), (x).end()
#define DBG(x) cout << __LINE__ << " says: " << #x << " = " << (x) << endl
#define READ freopen("alu.txt", "r", stdin)
#define WRITE freopen("vorta.txt", "w", stdout)

#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;

template<class TIn>using indexed_set = tree<TIn, null_type, less<TIn>,rb_tree_tag, tree_order_statistics_node_update>;

/**

PBDS
-------------------------------------------------
1) insert(value)
2) erase(value)
3) order_of_key(value) // 0 based indexing
4) *find_by_order(position) // 0 based indexing

**/

template<class T1, class T2>
ostream &operator <<(ostream &os, pair<T1,T2>&p);
template <class T>
ostream &operator <<(ostream &os, vector<T>&v);
template <class T>
ostream &operator <<(ostream &os, set<T>&v);

inline void optimizeIO()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
}

const int nmax = 2e5+7;
const LL LINF = 1e17;

template <class T>
string to_str(T x)
{
stringstream ss;
ss<<x;
return ss.str();
}

//bool cmp(const PII &A,const PII &B)
//{
//
//}

void count_sort(vector<int> &p,vector<int> &c)
{
int n = p.size();

vector<int>cnt(n);

for(auto el:c)
cnt[el]++;

vector<int>np(n);
vector<int>pos(n); /// pos[i] = first empty position in bucket i

pos[0] = 0;
for(int i=1; i<n; i++)
pos[i] = pos[i-1] + cnt[i-1];

for(auto el:p)
{
int i = c[el]; /// bucket
np[pos[i]] = el; /// putting element in bucket
pos[i]++; /// empty position in bucket i increased
}

p = np;

}

vector<int> buildSuffixArray(string s)
{
s += "$";

int n = s.size();

/// init p , c

vector<PII>v(n);

for(int i=0; i<n; i++)
v[i] = {s[i],i};
sort(ALL(v));

vector<int>p(n), c(n);
for(int i=0; i<n; i++)
p[i] = v[i].S;

c[p[0]] = 0;
for(int i=1; i<n; i++)
{
if(v[i].F!=v[i-1].F)
c[p[i]] = c[p[i-1]] + 1;
else
c[p[i]] = c[p[i-1]];
}

/// logN times

int k = 0;

while((1<<k) < n)
{
for(int i=0; i<n; i++)
p[i] = (p[i] - (1<<k) + n)%n;

count_sort(p,c);

vector<int>nc(n);

nc[p[0]] = 0;
for(int i=1; i<n; i++)
{
PII now = { c[p[i]] , c[ (p[i]+(1<<k))%n] };
PII prev = { c[p[i-1]] , c[ (p[i-1]+(1<<k))%n] };

if(now!=prev)
nc[p[i]] = nc[p[i-1]] + 1;
else
nc[p[i]] = nc[p[i-1]];
}

c = nc;
k++;
}

/// after all the iterations , c[i] = position of the suffix i in p

return p;
}

int lowerBound(int lo,int hi,string s,string key,vector<int> &ara)
{
while(lo!=hi)
{
int mid = lo + (hi-lo)/2;

string chk = s.substr(ara[mid],key.size());

if(chk<key) lo = mid + 1;
else hi = mid;
}

return lo;

}

int upperBound(int lo,int hi,string s,string key,vector<int> &ara)
{
while(lo!=hi)
{
int mid = lo + (hi-lo)/2;

string chk = s.substr(ara[mid],key.size());

if(chk<=key) lo = mid + 1;
else hi = mid;
}

return lo;
}

vector<int> buildLCPArray(string s,vector<int> &p)
{
s+="$";
int n = s.size();

vector<int>rnk(n);

for(int i=0;i<n;i++)
rnk[p[i]] = i; /// this is basically the c array after all iterations

vector<int>lcp(n);

int k = 0;

for(int i=0;i<n-1;i++)
{
int pi = rnk[i];
int j = p[pi-1];

/// lcp[i] = lcp(s[i...],s[j...])

while(s[i+k]==s[j+k]) k++;
lcp[pi] = k;
k = max(k-1,0);
}

return lcp;
}

int main()
{
optimizeIO();

int tc;
cin>>tc;

for(int qq=1;qq<=tc;qq++)
{
string s,sub;
cin>>s>>sub;

int n = s.size();

vector<int> p = buildSuffixArray(s);
vector<int>lcp = buildLCPArray(s,p);

vector<int> ending_pos(p.size(),-1);

int lo = lowerBound(0,n+1,s,sub,p);
int hi = upperBound(0,n+1,s,sub,p);

for(int i=lo;i<hi;i++)
ending_pos[p[i]] = p[i] + sub.size() - 1;

int now = s.size();

for(int i = (int)ending_pos.size() - 1;i>=0;i--)
{
if(ending_pos[i]==-1) ending_pos[i] = now;
else now = ending_pos[i];
}

// for(int i=0; i<(int)p.size(); i++)
// cout<<p[i]<<" "<<lcp[i]<<" "<<s.substr(p[i],s.size()-p[i])<<endl;
// cout<<endl;

LL ans = 0;

for(int i=0;i<lcp.size();i++)
{
int st = p[i] + lcp[i];
int en = ending_pos[p[i]];

if(en>st) ans += en-st;
}

cout<<"Case "<<qq<<": ";
cout<<ans<<endl;
}

return 0;
}

/**
100
abacdaba
aba
**/

template<class T1, class T2>
ostream &operator <<(ostream &os, pair<T1,T2>&p)
{
os<<"{"<<p.first<<", "<<p.second<<"} ";
return os;
}
template <class T>
ostream &operator <<(ostream &os, vector<T>&v)
{
os<<"[ ";
for(int i=0; i<v.size(); i++)
{
os<<v[i]<<" " ;
}
os<<" ]";
return os;
}

template <class T>
ostream &operator <<(ostream &os, set<T>&v)
{
os<<"[ ";
for(T i:v)
{
os<<i<<" ";
}
os<<" ]";
return os;
}