LightOj 1347 (Aladdin and the Magical Lamp)

#lightoj #cp #problem_solving #string #suffix_array #two_pointer

Idea


  • Let’s think an easier version of this problem . We have to find the _longest common substring_ of 2 strings .
    In that case , we concatenate 2 strings and build the suffix array .
    Now the answer is the max of all LCP(i,j) where i belongs to the suffix starting from the first string and j belongs to the suffix starting from the second string and LCP(i,j) means longest common prefix of suffix starting from i and j .
    We can find LCP(i,j) by finding the minimum value in the LCP array in the range [i+1,j] .
    Bruteforcing all the i , j value will lead to O(N^2) solution . We can see in the suffix array that the resulting answer can be found only checking the adjacent suffixes if the belong from different strings.
    You can easily prove why that is the case (Think about the sorted property of Suffix Array)

  • Now let’s think of the current problem . We have to find the _longest common substring_ of 3 strings .
    We similarly concatenate 3 strings and build the suffix array .
    Now the answer is the max of all LCP(i,j,k) where i,j,k belongs to suffix starting from the first , second and third string respectively .
    We can see that our range will contain at least one type of each string in every possible cases .
    Thus we can make a 2 pointer solution and find all the ranges where each type of string occurs at least once . And query LCP of that range .

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

/** Which of the favors of your Lord will you deny ? **/

#include<bits/stdc++.h>
using namespace std;

#define LL long long
#define PII pair<int,int>
#define PLL pair<LL,LL>
#define MP make_pair
#define F first
#define S second

#define ALL(x) (x).begin(), (x).end()
#define DBG(x) cout << __LINE__ << " says: " << #x << " = " << (x) << endl
#define READ freopen("alu.txt", "r", stdin)
#define WRITE freopen("vorta.txt", "w", stdout)

#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;

template<class TIn>using indexed_set = tree<TIn, null_type, less<TIn>,rb_tree_tag, tree_order_statistics_node_update>;

/**

PBDS
-------------------------------------------------
1) insert(value)
2) erase(value)
3) order_of_key(value) // 0 based indexing
4) *find_by_order(position) // 0 based indexing

**/

template<class T1, class T2>
ostream &operator <<(ostream &os, pair<T1,T2>&p);
template <class T>
ostream &operator <<(ostream &os, vector<T>&v);
template <class T>
ostream &operator <<(ostream &os, set<T>&v);

inline void optimizeIO()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
}

const int nmax = 2e5+7;
const LL LINF = 1e17;

template <class T>
string to_str(T x)
{
stringstream ss;
ss<<x;
return ss.str();
}

//bool cmp(const PII &A,const PII &B)
//{
//
//}

LL ara[nmax];

/** Segment Tree **/
/*** 1 based indexing ***/

struct node
{
LL mn;

void create_leaf(LL val)
{
mn=val;
}

void merge_nodes(node &A,node &B)
{
mn = min(A.mn , B.mn);
}

};

const int nmax2 = nmax<<2;
node Tree[nmax2];

void build(int cur,int start,int end) /** build the segment tree **/
{
if(start==end)
{
Tree[cur].create_leaf(ara[start]);
return;
}

int mid = (start+end)>>1;
int lc = cur<<1, rc = lc|1;

build(lc,start,mid);
build(rc,mid+1,end);

Tree[cur].merge_nodes(Tree[lc],Tree[rc]);

}

void query(node &res,int cur,int start,int end,int l,int r) /** RANGE query **/
{
if(l>r)
return;

if(start>=l && end<=r)
{
res = Tree[cur];
return;
}

int mid = (start+end)>>1;
int lc = cur<<1, rc = lc|1;

if(r<=mid)
query(res,lc,start,mid,l,r);
else if(l>mid)
query(res,rc,mid+1,end,l,r);
else
{
node left,right;
query(left,lc,start,mid,l,r);
query(right,rc,mid+1,end,l,r);
res.merge_nodes(left,right);
}
}

void count_sort(vector<int> &p,vector<int> &c)
{
int n = p.size();

vector<int>cnt(n);

for(auto el:c)
cnt[el]++;

vector<int>np(n);
vector<int>pos(n); /// pos[i] = first empty position in bucket i

pos[0] = 0;
for(int i=1; i<n; i++)
pos[i] = pos[i-1] + cnt[i-1];

for(auto el:p)
{
int i = c[el]; /// bucket
np[pos[i]] = el; /// putting element in bucket
pos[i]++; /// empty position in bucket i increased
}

p = np;

}

vector<int> buildSuffixArray(string s)
{
int n = s.size();

/// init p , c

vector<PII>v(n);

for(int i=0; i<n; i++)
v[i] = {s[i],i};
sort(ALL(v));

vector<int>p(n), c(n);
for(int i=0; i<n; i++)
p[i] = v[i].S;

c[p[0]] = 0;
for(int i=1; i<n; i++)
{
if(v[i].F!=v[i-1].F)
c[p[i]] = c[p[i-1]] + 1;
else
c[p[i]] = c[p[i-1]];
}

/// logN times

int k = 0;

while((1<<k) < n)
{
for(int i=0; i<n; i++)
p[i] = (p[i] - (1<<k) + n)%n;

count_sort(p,c);

vector<int>nc(n);

nc[p[0]] = 0;
for(int i=1; i<n; i++)
{
PII now = { c[p[i]], c[ (p[i]+(1<<k))%n] };
PII prev = { c[p[i-1]], c[ (p[i-1]+(1<<k))%n] };

if(now!=prev)
nc[p[i]] = nc[p[i-1]] + 1;
else
nc[p[i]] = nc[p[i-1]];
}

c = nc;
k++;
}

/// after all the iterations , c[i] = position of the suffix i in p

return p;
}

vector<int> buildLCPArray(string s,vector<int> &p)
{
int n = s.size();

vector<int>rnk(n);

for(int i=0; i<n; i++)
rnk[p[i]] = i; /// this is basically the c array after all iterations

vector<int>lcp(n);

int k = 0;

for(int i=0; i<n-1; i++)
{
int pi = rnk[i];
int j = p[pi-1];

/// lcp[i] = lcp(s[i...],s[j...])

while(s[i+k]==s[j+k])
k++;
lcp[pi] = k;
k = max(k-1,0);
}

return lcp;
}

int longestCommonSubstring(string s1,string s2,string s3)
{
string s = s1 + char(38) + s2 + char(37) + s3 + char(36);

// cout<<s<<endl;

int sz1 = s1.size();
int sz2 = s2.size();

vector<int>p = buildSuffixArray(s);
vector<int>lcp = buildLCPArray(s,p);

for(int i=0;i<lcp.size();i++)
ara[i] = lcp[i];

build(1,1,lcp.size());

vector<int>TYPE(lcp.size());

for(int i=0;i<p.size();i++)
{
int now = p[i];

int type = -1;

if(now>sz1+sz2+1) type = 2;
else if(now>sz1) type = 1;
else type = 0;

TYPE[now] = type;
}

// for(int i=0; i<(int)p.size(); i++)
// cout<<i<<" "<<p[i]<<" "<<lcp[i]<<" "<<TYPE[p[i]]<<" "<<s.substr(p[i],s.size()-p[i])<<endl;
// cout<<endl;

int mx = 0;
string ans = "";

int p1 = 0;
int p2 = 0;

int lim = lcp.size();

vector<int>ok(3,0);

while(1)
{
while(p2<lim && (ok[0]==0 || ok[1]==0 || ok[2]==0))
{
ok[TYPE[p[p2]]]++;
p2++;
}

while(p2<lim && ok[TYPE[p[p1]]]>1)
{
ok[TYPE[p[p1]]]--;
p1++;
}

if(ok[0]>0 && ok[1]>0 && ok[2]>0)
{
node temp;
query(temp,1,1,lim,p1+1,p2-1);
int mn = temp.mn;
mx = max(mx,mn);
}

ok[TYPE[p[p1]]]--;
p1++;

if(p1>=lim && p2>=lim)
break;
}

return mx;
}

int main()
{
optimizeIO();

// WRITE;

int tc;
cin>>tc;

for(int qq=1; qq<=tc; qq++)
{
string s1,s2,s3;
cin>>s1>>s2>>s3;

int ans = longestCommonSubstring(s1,s2,s3);

cout<<"Case "<<qq<<": ";
cout<<ans<<endl;
}

return 0;
}

/**
xrjpreppn
yjprep
mwcyjprepsy
**/

template<class T1, class T2>
ostream &operator <<(ostream &os, pair<T1,T2>&p)
{
os<<"{"<<p.first<<", "<<p.second<<"} ";
return os;
}
template <class T>
ostream &operator <<(ostream &os, vector<T>&v)
{
os<<"[ ";
for(int i=0; i<v.size(); i++)
{
os<<v[i]<<" " ;
}
os<<" ]";
return os;
}

template <class T>
ostream &operator <<(ostream &os, set<T>&v)
{
os<<"[ ";
for(T i:v)
{
os<<i<<" ";
}
os<<" ]";
return os;
}