LightOj 1314 (Names for Babies)

#lightoj #cp #problem_solving #string #suffix_array

Idea


  • Let’s think of an easier version of the current problem . How many distinct substrings are possible ?
    If you notice the LCP array_ carefully , you will notice that you can get the _repeated_ substring from each value of the array
    i.e LCP[i] number of substrings are repeated for that suffix.
    So , The number of _distinct_ substring = _Number of total possible substrings_ - _Sum of all LCP values

  • Now , let’s think about our current problem .
    Notice that for each LCP[i] , length of string 1 , 2LCP[i] are repeated .
    So , for each LCP[i] , number of distinct substring of length 1 , 2LCP[i] is reduced by 1.

Initially , number of substring of length i is n-i+1
i.e number of substring of length 1 is n , number of substring of length 2 is n-1 and so on.

We can do the range update operation in many ways , like applying segment tree or BIT .
Although they are overkill in this case as we have only update operations .
We can thus simply maintain a dummy array to do the update operation .

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

/** Which of the favors of your Lord will you deny ? **/

#include<bits/stdc++.h>
using namespace std;

#define LL long long
#define PII pair<int,int>
#define PLL pair<LL,LL>
#define MP make_pair
#define F first
#define S second

#define ALL(x) (x).begin(), (x).end()
#define DBG(x) cout << __LINE__ << " says: " << #x << " = " << (x) << endl
#define READ freopen("alu.txt", "r", stdin)
#define WRITE freopen("vorta.txt", "w", stdout)

#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;

template<class TIn>using indexed_set = tree<TIn, null_type, less<TIn>,rb_tree_tag, tree_order_statistics_node_update>;

/**

PBDS
-------------------------------------------------
1) insert(value)
2) erase(value)
3) order_of_key(value) // 0 based indexing
4) *find_by_order(position) // 0 based indexing

**/

template<class T1, class T2>
ostream &operator <<(ostream &os, pair<T1,T2>&p);
template <class T>
ostream &operator <<(ostream &os, vector<T>&v);
template <class T>
ostream &operator <<(ostream &os, set<T>&v);

inline void optimizeIO()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
}

const int nmax = 2e5+7;
const LL LINF = 1e17;

template <class T>
string to_str(T x)
{
stringstream ss;
ss<<x;
return ss.str();
}

//bool cmp(const PII &A,const PII &B)
//{
//
//}

void count_sort(vector<int> &p,vector<int> &c)
{
int n = p.size();

vector<int>cnt(n);

for(auto el:c)
cnt[el]++;

vector<int>np(n);
vector<int>pos(n); /// pos[i] = first empty position in bucket i

pos[0] = 0;
for(int i=1; i<n; i++)
pos[i] = pos[i-1] + cnt[i-1];

for(auto el:p)
{
int i = c[el]; /// bucket
np[pos[i]] = el; /// putting element in bucket
pos[i]++; /// empty position in bucket i increased
}

p = np;

}

vector<int> buildSuffixArray(string s)
{
s += "$";

int n = s.size();

/// init p , c

vector<PII>v(n);

for(int i=0; i<n; i++)
v[i] = {s[i],i};
sort(ALL(v));

vector<int>p(n), c(n);
for(int i=0; i<n; i++)
p[i] = v[i].S;

c[p[0]] = 0;
for(int i=1; i<n; i++)
{
if(v[i].F!=v[i-1].F)
c[p[i]] = c[p[i-1]] + 1;
else
c[p[i]] = c[p[i-1]];
}

/// logN times

int k = 0;

while((1<<k) < n)
{
for(int i=0; i<n; i++)
p[i] = (p[i] - (1<<k) + n)%n;

count_sort(p,c);

vector<int>nc(n);

nc[p[0]] = 0;
for(int i=1; i<n; i++)
{
PII now = { c[p[i]], c[ (p[i]+(1<<k))%n] };
PII prev = { c[p[i-1]], c[ (p[i-1]+(1<<k))%n] };

if(now!=prev)
nc[p[i]] = nc[p[i-1]] + 1;
else
nc[p[i]] = nc[p[i-1]];
}

c = nc;
k++;
}

/// after all the iterations , c[i] = position of the suffix i in p

return p;
}

vector<int> buildLCPArray(string s,vector<int> &p)
{
s+="$";
int n = s.size();

vector<int>rnk(n);

for(int i=0; i<n; i++)
rnk[p[i]] = i; /// this is basically the c array after all iterations

vector<int>lcp(n);

int k = 0;

for(int i=0; i<n-1; i++)
{
int pi = rnk[i];
int j = p[pi-1];

/// lcp[i] = lcp(s[i...],s[j...])

while(s[i+k]==s[j+k])
k++;
lcp[pi] = k;
k = max(k-1,0);
}

return lcp;
}

int main()
{
optimizeIO();

// WRITE;

int tc;
cin>>tc;

for(int qq=1;qq<=tc;qq++)
{
string s;
cin>>s;

int left , right;
cin>>left>>right;

vector<int>p = buildSuffixArray(s);
vector<int>lcp = buildLCPArray(s,p);

// for(int i=0; i<(int)p.size(); i++)
// cout<<p[i]<<" "<<lcp[i]<<" "<<s.substr(p[i],s.size()-p[i])<<endl;
// cout<<endl;

int n = s.size();

vector<int>sub(n+1),dummy(n+1,0);

for(int i=1;i<=n;i++)
sub[i] = n-i+1; /// sub[i] = number of substring of length i

for(int i=1; i<(int)lcp.size(); i++)
{
int l = 1;
int r = lcp[i];

if(l<=r)
{
int upd = -1;

dummy[l] += upd;
if(r+1<=n) dummy[r+1] -= upd;
}
}


for(int i=1;i<(int)dummy.size();i++)
dummy[i] += dummy[i-1];

for(int i=1;i<=n;i++)
sub[i] += dummy[i];

LL ans = 0;

for(int i=left;i<=right;i++)
ans += sub[i];

cout<<"Case "<<qq<<": ";
cout<<ans<<endl;
}



return 0;
}

/**
abb@bbabb
**/

template<class T1, class T2>
ostream &operator <<(ostream &os, pair<T1,T2>&p)
{
os<<"{"<<p.first<<", "<<p.second<<"} ";
return os;
}
template <class T>
ostream &operator <<(ostream &os, vector<T>&v)
{
os<<"[ ";
for(int i=0; i<v.size(); i++)
{
os<<v[i]<<" " ;
}
os<<" ]";
return os;
}

template <class T>
ostream &operator <<(ostream &os, set<T>&v)
{
os<<"[ ";
for(T i:v)
{
os<<i<<" ";
}
os<<" ]";
return os;
}