LightOj 1248 (Dice III)

#lightoj #cp #problem_solving #probability #expected_value

Idea


  • First expected value problem I solved was this
    Now , I took idea from that problem and solved it by converting this problem to that problem .
  • Another way to look at this problem is there are n 1’s and in one move we can make any 1 to 0 .
    Now the question becomes the expected value of all becoming 0 .
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

/** Which of the favors of your Lord will you deny ? **/

#include<bits/stdc++.h>
using namespace std;

#define LL long long
#define PII pair<int,int>
#define PLL pair<LL,LL>
#define MP make_pair
#define F first
#define S second

#define ALL(x) (x).begin(), (x).end()
#define DBG(x) cerr << __LINE__ << " says: " << #x << " = " << (x) << endl
#define READ freopen("alu.txt", "r", stdin)
#define WRITE freopen("vorta.txt", "w", stdout)

#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;

template<class TIn>using indexed_set = tree<TIn, null_type, less<TIn>,rb_tree_tag, tree_order_statistics_node_update>;

/**

PBDS
-------------------------------------------------
1) insert(value)
2) erase(value)
3) order_of_key(value) // 0 based indexing
4) *find_by_order(position) // 0 based indexing

**/

template<class T1, class T2>
ostream &operator <<(ostream &os, pair<T1,T2>&p);
template <class T>
ostream &operator <<(ostream &os, vector<T>&v);
template <class T>
ostream &operator <<(ostream &os, set<T>&v);

inline void optimizeIO()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
}

const int nmax = 1e5+7;
const LL LINF = 1e17;

template <class T>
string to_str(T x)
{
stringstream ss;
ss<<x;
return ss.str();
}

//bool cmp(const PII &A,const PII &B)
//{
//
//}

int main()
{
optimizeIO();

// WRITE;

int tc;
scanf("%d",&tc);

for(int q=1;q<=tc;q++)
{
int n;
scanf("%d",&n);

vector<double>p(n+1); /** probability **/
vector<double>ev(n+1); /** expected value **/

/// (n) -> (0)

p[n] = 1;

for(int i=n; i>=0; i--)
{
if(i==0)
continue;

double p_waste = (double)(n-i)/n;
/// ev_waste = p_waste + p_waste^2 + ....
double ev_waste = p_waste/(1-p_waste) + 1 ; /** +1 is because I also need to move to some other state other than wasting **/

ev[i] += ev_waste * p[i];

/// remove 1 from 1's pile
if(i!=0)
{
double p_here = 1; /** probability of coming to this state is i/i **/
p[i-1] += p[i] * p_here;
ev[i-1] += ev[i] * p_here;
}
}

printf("Case %d: ",q);
printf("%0.6f\n",ev[0]);
}

return 0;
}

/**

**/

template<class T1, class T2>
ostream &operator <<(ostream &os, pair<T1,T2>&p)
{
os<<"{"<<p.first<<", "<<p.second<<"} ";
return os;
}
template <class T>
ostream &operator <<(ostream &os, vector<T>&v)
{
os<<"[ ";
for(int i=0; i<v.size(); i++)
{
os<<v[i]<<" " ;
}
os<<" ]";
return os;
}

template <class T>
ostream &operator <<(ostream &os, set<T>&v)
{
os<<"[ ";
for(T i:v)
{
os<<i<<" ";
}
os<<" ]";
return os;
}