LightOj 1170 (Counting Perfect BST)

#lightoj #cp #problem_solving #binary_search

Idea


Binary Search / Catalan Number

  • If there are n prefect power numbers in [a,b] , Answer is basically Catalan(n)
  • Catalan(n) = (2n)! / (n! *(n+1)!)

Proof


  • Consider all possible binary search trees with each element at the root.
    If there are n nodes, then for each choice of root node, there are n – 1 non-root nodes and these non-root nodes must be partitioned into those that are less than a chosen root and those that are greater than the chosen root.
  • Let’s say node i is chosen to be the root. Then there are i – 1 nodes smaller than i and n – i nodes bigger than i. For each of these two sets of nodes, there is a certain number of possible subtrees.
  • Let T(n) be the total number of BSTs with n nodes. The total number of BSTs with i at the root is T(i – 1) * T(n – i). The two terms are multiplied together because the arrangements in the left and right subtrees are independent. That is, for each arrangement in the left tree and for each arrangement in the right tree, you get one BST with i at the root.
  • Summing over i gives the total number of binary search trees with n nodes.
    T(n) = Summation(i = 1 to n) [T(i – 1) * T(n – i)]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

/** Which of the favors of your Lord will you deny ? **/

#include<bits/stdc++.h>
using namespace std;

#define LL long long
#define PII pair<int,int>
#define PLL pair<LL,LL>
#define MP make_pair
#define F first
#define S second
#define INF INT_MAX

#define ALL(x) (x).begin(), (x).end()
#define DBG(x) cerr << __LINE__ << " says: " << #x << " = " << (x) << endl

#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;

template<class TIn>using indexed_set = tree<TIn, null_type, less<TIn>,rb_tree_tag, tree_order_statistics_node_update>;

/**
PBDS
-------------------------------------------------
1) insert(value)
2) erase(value)
3) order_of_key(value) // 0 based indexing
4) *find_by_order(position) // 0 based indexing
**/

template<class T1, class T2>
ostream &operator <<(ostream &os, pair<T1,T2>&p);
template <class T>
ostream &operator <<(ostream &os, vector<T>&v);
template <class T>
ostream &operator <<(ostream &os, set<T>&v);

inline void optimizeIO()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
}

const int nmax = 1e6+7;
const LL LINF = 1e17;

string to_str(LL x)
{
stringstream ss;
ss<<x;
return ss.str();
}

//bool cmp(const PII &A,const PII &B)
//{
//
//}


set<LL>SET;
vector<LL>v;
LL facto[nmax];
LL mod = 100000007;

// ax + by = GCD(a,b)
// r2 is GCD(a,b) and X & Y will be the co-eff of a and b respectively
LL ext_gcd ( LL A, LL B, LL &X, LL &Y )
{
LL x2, y2, x1, y1, x, y, r2, r1, q, r;
x2 = 1;
y2 = 0;
x1 = 0;
y1 = 1;
for (r2 = A, r1 = B; r1 != 0; r2 = r1, r1 = r, x2 = x1, y2 = y1, x1 = x, y1 = y )
{
q = r2 / r1;
r = r2 % r1;
x = x2 - (q * x1);
y = y2 - (q * y1);
}
X = x2;
Y = y2;
return r2;
}

//when inverse of a (w.r.to mo) && mo is not prime
LL modInv_general ( LL a, LL m ) {
LL x, y;
ext_gcd( a, m, x, y );

// Process x so that it is between 0 and m-1
x %= m;
if ( x < 0 ) x += m;
return x;
}

void precalc1()
{
LL lim = 1e10;

for(LL i=2; i*i<=lim; i++)
{
LL val = i;

for(LL j=1; val<=lim; j++)
{
val *= i;

if(!SET.count(val))
{
SET.insert(val);
v.push_back(val);
}
}
}
}

void precalc2()
{
/** SET size is around 2e5 **/

LL lim = 1e6;

facto[0] = 1;

for(LL i=1; i<=lim; i++)
{
facto[i]=((facto[i-1]%mod)*(i%mod))%mod; //(facto[i-1]*i)%m
}
}

LL catalan(LL n)
{
if(n==0)
return 0;

LL ans1 = facto[2*n];
LL v1 = facto[n];
LL v2 = facto[n+1];

LL ans2 = modInv_general(v1,mod);
LL ans3 = modInv_general(v2,mod);

LL ans = (ans1*ans2)%mod;
ans = (ans*ans3)%mod;

return ans;
}

int main()
{
//freopen("out.txt","w",stdout);

optimizeIO();

precalc1();
precalc2();

sort(ALL(v));

int tc;
cin>>tc;

for(int q=1; q<=tc; q++)
{
LL a,b;
cin>>a>>b;

LL ca = upper_bound(ALL(v),a-1)-v.begin();
LL cb = upper_bound(ALL(v),b)-v.begin();

LL n = cb-ca;

LL ans = catalan(n);

cout<<"Case "<<q<<": ";
cout<<ans<<endl;
}

return 0;
}

/**
4
1 4
5 10
1 10
1 3
**/

template<class T1, class T2>
ostream &operator <<(ostream &os, pair<T1,T2>&p)
{
os<<"{"<<p.first<<", "<<p.second<<"} ";
return os;
}
template <class T>
ostream &operator <<(ostream &os, vector<T>&v)
{
os<<"[ ";
for(int i=0; i<v.size(); i++)
{
os<<v[i]<<" " ;
}
os<<" ]";
return os;
}

template <class T>
ostream &operator <<(ostream &os, set<T>&v)
{
os<<"[ ";
for(T i:v)
{
os<<i<<" ";
}
os<<" ]";
return os;
}