LightOj 1105 (Fi Binary Number)

#lightoj #cp #problem_solving #dp

Idea


Zeckendorf representation | Fibonacci Number

  • The Zeckendorf representation of an integer is the unique way of representing that integer as a sum of non-consecutive Fibonacci numbers.
  • Every positive integer n has a Zeckendorf representation as a sum of non-consecutive Fibonacci numbers Fi
  • For any given positive integer, a representation that satisfies the conditions of Zeckendorf’s theorem can be found by using a greedy algorithm, choosing the largest possible Fibonacci number at each stage.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

/** Which of the favors of your Lord will you deny ? **/

#include<bits/stdc++.h>
using namespace std;

#define LL long long
#define PII pair<int,int>
#define PLL pair<LL,LL>
#define MP make_pair
#define F first
#define S second
#define INF INT_MAX

#define ALL(x) (x).begin(), (x).end()
#define DBG(x) cerr << __LINE__ << " says: " << #x << " = " << (x) << endl
#define READ freopen("alu.txt", "r", stdin)
#define WRITE freopen("vorta.txt", "w", stdout)

#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;

template<class TIn>using indexed_set = tree<TIn, null_type, less<TIn>,rb_tree_tag, tree_order_statistics_node_update>;

/**

PBDS
-------------------------------------------------
1) insert(value)
2) erase(value)
3) order_of_key(value) // 0 based indexing
4) *find_by_order(position) // 0 based indexing

**/

template<class T1, class T2>
ostream &operator <<(ostream &os, pair<T1,T2>&p);
template <class T>
ostream &operator <<(ostream &os, vector<T>&v);
template <class T>
ostream &operator <<(ostream &os, set<T>&v);

inline void optimizeIO()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
}

const int nmax = 2e5+7;
const LL LINF = 1e17;

template <class T>
string to_str(T x)
{
stringstream ss;
ss<<x;
return ss.str();
}

//bool cmp(const PII &A,const PII &B)
//{
//
//}

LL fib[nmax];
LL cnt = 0;

void precalc()
{
fib[0] = 1;
fib[1] = 1;

for(LL i=2; ; i++)
{
fib[i] = fib[i-1] + fib[i-2];
cnt = i;

if(fib[i]>1e9)
break;
}
}

string solve(LL n)
{
vector<LL>ans;

while(n)
{
LL id = upper_bound(fib+1,fib+cnt+1,n) - fib - 1; /** greedy , take the current highest fibonacci number **/

ans.push_back(id);
n -= fib[id];
}

string temp = string(ans[0],'0');

for(auto x:ans)
temp[x-1] = '1';

reverse(ALL(temp));

return temp;
}


int main()
{
//freopen("out.txt","w",stdout);

optimizeIO();

precalc();

int tc;
cin>>tc;

for(int qq=1; qq<=tc; qq++)
{
LL n;
cin>>n;

string ans = solve(n);

cout<<"Case "<<qq<<": "<<ans<<endl;

}

return 0;
}

/**

**/

template<class T1, class T2>
ostream &operator <<(ostream &os, pair<T1,T2>&p)
{
os<<"{"<<p.first<<", "<<p.second<<"} ";
return os;
}
template <class T>
ostream &operator <<(ostream &os, vector<T>&v)
{
os<<"[ ";
for(int i=0; i<v.size(); i++)
{
os<<v[i]<<" " ;
}
os<<" ]";
return os;
}

template <class T>
ostream &operator <<(ostream &os, set<T>&v)
{
os<<"[ ";
for(T i:v)
{
os<<i<<" ";
}
os<<" ]";
return os;
}